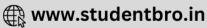


Significant Digit and Rounding off Numbers, Fundamental concepts

Basic Level

1.	The number 3.14150 rounded	d to 3 decimals is				[MP PET 2000]
	(a) 3.14	(b) 3.141	(c)	3.142	(d)	None of these
2.	The number of significant dig	gits in 0.003050 is				
	(a) 7	(b) 6	(c)	4	(d)	None of these
3.	The number of significant dig	gits in 20.035 is				
	(a) 3	(b) 5	(c)	4	(d)	None of these
4.	The number of significant dig	gits in 20340 is				
	(a) 4	(b) 5	(c)	3	(d)	None of these
5.	The number 0.0008857 when	n rounded off to three significant di	gits	yields		
	(a) 0.001	(b) 0.000886	(c)	0.000885	(d)	None of these
6.	The number 3.68451 when ro	ounded off to three decimal places	bec	omes		
	(a) 3.68	(b) 3.684	(c)	3.685	(d)	None of these
7.	The number of significant dig	gits in the number 0.00452000 is				
	(a) 3	(b) 5	(c)	8	(d)	None of these
8.	When a number is approxim	ated to n decimal places by choppi	ng c	off the extra digits, then th	ie ab	osolute value of the relative error
	does not exceed					
	(a) 10^{-n}	(b) 10^{-n+1}	(c)	$0.5 \times 10^{-n+1}$	(d)	None of these
9.	When the number 6.878652	is rounded off to five significant fig	ures	, then the round off error	is	
	(a) - 0.000048	(b) -0.00048	(c)	0.000048	(d)	0.00048
10.	The number 0.0009845 when	n rounded off to three significant di	igits	yields		[DCE 1998]



	(a) 0.001	(b) 0.000987	(c) 0.000985	(d) None of these									
11.	A decimal number is	chopped off to four decimal plac	ces, then the absolute value of the r	relative error is not greater than [DCE 1996]									
	(a) 10^{-2}	(b) 10^{-3}	(c) 10^{-4}	(d) None of these									
12.	If e_1 and e_2 are absolute errors in two numbers n_1 and n_2 respectively due to rounding or truncation, then $\left \frac{e_1}{n_1} + \frac{e_2}{n_2} \right $												
	(a) Is equal to $e_1 + e_2$?2	(b) Is less then $e_1 + e_2$										
	(c) Is less then or eq	$ual to e_1 + e_2$	(d) Is greater then or e	Is greater then or equal to $e_1 + e_2$									
13.	In general the ratio of the truncation error to that of round off error is												
	(a) 1:2	(b) 2:1	(c) 1:1	(d) None of these									
14.	The equation $e^{-2x} - 8$	$\sin x + 1 = 0$ is of the form											
	(a) Algebraic	(b) Linear	(c) Quadratic	(d) Transcendental									
15.	The root of the equa	ation $x^3 - 6x + 1 = 0$ lies in the int	terval										
	(a) (2, 3)	(b) (3, 4)	(c) (3, 5)	(d) (4, 6)									
16.	The root of the equat	tion $x^3 - 3x - 5 = 0$ in the interval	al (1, 2) is										
	(a) 1.13		(b) 1.98										
	(c) 1.54		(d) No root lies in the ir	nterval (1, 2)									
17.	The equation $f(x) = 0$ has repeated root $a \in (x_1, x_2)$, if												
	(a) $f'(a) < 0$	(b) $f'(a) > 0$	(c) $f'(a) = 0$	(d) None of these									
18.	The root of the equat	tion $2x - \log_{10} x = 7$ lies between	n										
	(a) 3 and 3.5	(b) 2 and 3	(c) 3.5 and 4	(d) None of these									
19.	For the equation $f(x)$	(a) = 0, if $f(a) < 0$, $f(b) > 0$, $f(c) > 0$) and $b > c$ then we will discard the	e value of the function $f(x)$ at the point									
	(a) <i>a</i>	(b) <i>b</i>	(c) <i>c</i>	(d) Anyone out of <i>a, b, c</i>									
20.	The positive root of the	he equation $e^x + x - 3 = 0$ lies in	n the interval	·									
	(a) (0, 1)	(b) (1, 2)	(c) (2, 3)	(d) (2, 4)									
21.		he equation $x^3 - 2x - 5 = 0$ lies											
	(a) (0, 1)	(b) (1, 2)	(c) (2, 3)	(d) (3, 4)									
22.	One real root of the equation $x^3 - 5x + 1 = 0$ must lie in the interval												
	(a) (0, 1)	(b) (1, 2)	(c) (–1, 0)	(d) (–2, 0)									
23.		ve roots of the equation $x^3 - 3x$		[MP PET 1998]									
_5.	e mamber of positi		. 5 0 15	[1411 121 1330]									

CLICK HERE >>

(a) 1

(b) 2

(c) 3

(d) None of these

24. Let f(x) = 0 be an equation and x_1, x_2 be two real numbers such that $f(x_1) f(x_2) < 0$, then

[MP PET 1989, 1997]

- (a) At least one root of the equation lies in the interval (x_1, x_2)
- (b) No root of the equation lies in the interval (x_1, x_2)
- (c) Either no root or more than one root of the equation lies the interval (x_1, x_2)
- (d) None of these

25. Let f(x) = 0 be an equation let x_1, x_2 be two real numbers such that $f(x_1) f(x_2) > 0$, then

- (a) At least one root of the equation lies in (x_1, x_2)
- (b) No root of the equation lies in (x_1, x_2)
- (c) Either no root or an even number of roots lie in (x_1, x_2)
- (d) None of these

26. If for f(x) = 0, f(a) < 0 and f(b) > 0, then one root of f(x) = 0 is

(a) Between a and b

(b) One of from a and b

(c) Less than a and greater than b

(d)

None of these

27. If f(a)f(b) < 0, then an approximate value of a real root of f(x) = 0 lying between a and b is given by

(a)
$$\frac{af(b) - bf(a)}{b - a}$$

(b) $\frac{bf(a) - af(b)}{b - a}$

(c)
$$\frac{af(b)-bf(a)}{f(b)-f(a)}$$

(d) None of these

Successive bisection methoa

Basic Level

28. One root of $x^3 - x - 4 = 0$ lies in (1, 2). In bisection method, after first iteration the root lies in the interval

- (a) (1, 1.5)
- (b) (1.5, 2.0)
- (c) (1.25, 1.75)
- (d) (1.75, 2)

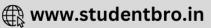
29. A root of the equation $x^3 - x - 1 = 0$ lies between 1 and 2. Its approximate value as obtained by applying bisection method 3 times is

[MP PET 1993]

- (a) 1.375
- (b) 1.625

- (c) 1.125
- (d) 1.25

30. A root of the equation $x^3 - x - 4 = 0$ lies between 1 and 2. Its approximate value, as obtained by applying bisection method 3 times, is



(a) 1.375

(b) 1.750

(c) 1.975

(d) 1.875

31. Performing 3 iterations of bisection method, the smallest positive approximate root of equation $x^3 - 5x + 1 = 0$ is

(a) 0.25

(b) 0.125

(c) 0.50

(d) 0.1875

A root of the equation $x^3 - 3x - 5 = 0$ lies between 2 and 2.5. Its approximate value, by applying bisection method 3 times is 32.

(a) 2.0625

(b) 2.3125

(c) 2.3725

(d) 2.4225

33. If for the function f(x) = 0, f(a) < 0 and f(b) > 0, then the value of x in first iteration is

(a) $\frac{a+b}{2}$

(b) $\frac{b-a}{2}$

(c) $\frac{2a-b}{2}$ (d) $\frac{2b-a}{2}$

34. Using successive bisection method, a root of the equation $x^3 - 4x + 1 = 0$ lies between 1 and 2, at the end of first interaction, it lies between **IDCE 19961**

(a) 1.62 and 1.75

(b) 1.5 and 1.75

(c) 1.75 and 1.87

(d) None of these

35. The nearest real root of the equation $xe^x - 2 = 0$ correct to two decimal places, is

(a) 1.08

(b) 0.92

(c) 0.85

(d) 0.80

Regula-Falsi methoa

Basic Level

By the false position method, the root of the equation $x^3 - 9x + 1 = 0$ lies in interval (2, 4) after first iteration. It is 36.

(a) 3

(b) 2.5

(c) 3.57

(d) 2.47

The formula [where $f(x_{n \le 1})$ and $f(x_n)$ have opposite sign at each step $n \ge 1$] of method of False position of successive 37. approximation to find the approximate value of a root of the equation f(x) = 0 is [MP PET 1995, 97]

(a) $x_{n+1} = x_n - \frac{f(x_n) - f(x_{n-1})}{f(x_n)} (x_n - x_{n-1})$

(b) $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})} (x_n - x_{n-1})$

(c) $x_{n+1} = x_n + \frac{f(x_n) + f(x_{n-1})}{f(x_n)} (x_n - x_{n-1})$

(d) $x_{n+1} = x_n + \frac{f(x_n)}{f(x_n) + f(x_n)} (x_n - x_{n-1})$

By false positioning, the second approximation of a root of equation f(x) = 0 is (where x_0, x_1 are initial and first approximations 38. respectively) [MP PET 1996; DCE 2001]

(a) $x_0 - \frac{f(x_0)}{f(x_1) - f(x_0)}$ (b) $\frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$ (c) $\frac{x_0 f(x_0) - x_1 f(x_1)}{f(x_1) - f(x_0)}$ (d) $x_0 - \frac{f(x_0)}{f(x_1) - f(x_0)}$

39. A root of the equation $x^3 - 18 = 0$ lies between 2 and 3. The value of the root by the method of false position is

(a) 2.526

(b) 2.536

(c) 2.546

(d) 2.556

40. The equation $x^3 - 3x + 4 = 0$ has only one real root. What is its first approximate value as obtained by the method of false position in (-3, -2)

[MP PET 1999]

- (a) -2.125
- (b) 2.125

- (c) -2.812
- (d) 2.812
- 41. A root of equation $x^3 + 2x 5 = 0$ lies between 1 and 1.5. its value as obtained by applying the method of false position only once is

[MP PET 1993]

(a) $\frac{4}{3}$

(b) $\frac{35}{27}$

- (c) $\frac{23}{25}$
- (d) $\frac{5}{4}$

Newton-Raphson methoa

Basic Level

42. If successive approximations are given by $x_1, x_2, x_3, \dots, x_n, x_{n+1}$, then Newton-Raphson formula is given as

IMP PET 1993, 951

(a) $x_{n+1} = x_n + \frac{f(x_{n+1})}{f'(x)}$

(b) $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$

(c) $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

- (d) $x_{n+1} = x_n \frac{f'(x_n)}{f(x_n)}$
- 43. Newton-Raphson method is applicable only when
 - (a) $f(x) \neq 0$ in the neighbourhood of actual root $x = \alpha$
- (b) $f'(x) \neq 0$ in the neighbourhood of actual root $x = \alpha$
- (c) $f''(x) \neq 0$ in the neighbourhood of actual root $x = \alpha$
- (d) None of these

- 44. Newton-Raphson processes has a
 - (a) Linear convergence
- (b) Quadratic convergence
- (c) Cubic convergence
- (d) None of these
- **45.** The condition for convergence of the Newton-Raphson method to a root α is

[MP PET 2001]

(a) $\frac{1}{2} \frac{f'(\alpha)}{f''(\alpha)} < 1$

(b) $\frac{f'(\alpha)}{f''(\alpha)} < 1$

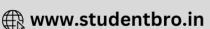
(c) $\frac{1}{2} \frac{f'(\alpha)}{f''(\alpha)} > 1$

- (d) None of these
- **46.** The real root of the equation $x^3 x 5 = 0$ lying between –1 and 2 after first iteration by Newton-Raphson method is
 - (a) 1.909
- (b) 1.904

- (c) 1.921
- (d) 1.940
- 47. A root of the equation $x^3 4x + 1 = 0$ lies between 1 and 2. Its value as obtained by using Newton-Raphson method is
 - (a) 1.775
- (b) 1.850

- (c) 1.875
- (d) 1.950
- **48.** The value of x_0 (the initial value of x) to get the solution in interval (0.5, 0.75) of the equation $x^3 5x + 3 = 0$ by Newton-Raphson method, is
 - (a) 0.5
- (b) 0.75

- (c) 0.625
- (d) None of these



49.	If a and a + h are two	o consecutive approximate roots	of the equation $f(x) = 0$ as obtain	ed by Newtons method, the	n <i>h</i> is equal to								
					[MP PET 1999]								
	(a) $f(a) / f'(a)$	(b) $f'(a)/f(a)$	(c) $-f'(a)/f(a)$	(d) $-f(a)/f'(a)$									
50.	The Newton-Raphson	n method converges fast if $f'(\alpha)$	is (α is the exact value of the root)		[DCE 1998]								
	(a) Small	(b) Large	(c) 0	(d) None of these									
			Advance Level										
			That are Level										
51.	If one root of the equ	uation $f(x) = 0$ is near to x_0 the	en the first approximation of this roo	ot as calculated by Newton-F	Raphson								
	method is the absciss	sa of the point where the following	ng straight line intersects the <i>x</i> -axis		[MP PET 1998]								
	(a) Normal to the cu	urve $y = f(x)$ at the point $(x_0, f(x_0))$	(x_0)										
	(b) Tangent to the c	curve $y = f(x)$ at the point $(x_0, f(x_0))$	(x_0)										
	(c) The straight line through the point $(x_0, f(x_0))$ having the gradient $\frac{1}{f'(x_0)}$												
	(d) The ordinate thr	ough the point $(x_0, f(x_0))$											
52.	A root of the equation	on $x^3 - 3x - 5 = 0$ lies between $x^3 - 3x - 5 = 0$	2 and 2.5. Its value as obtained by (using Newton-Raphson meth	nod, is								
	(a) 2.25	(b) 2.33	(c) 2.35	(d) 2.45									
53.	After second iteration	n of Newton-Raphson method, t	he positive root of equation $x^2 = 3$	is (taking initial approximat	$(\frac{3}{2})$								
					[MP PET 1996]								
	(a) $\frac{3}{2}$	(b) $\frac{7}{4}$	(c) $\frac{97}{56}$	(d) $\frac{347}{200}$									
54.	If one root of the eq	uation $x^3 + x^2 - 1 = 0$ is near to	1.0, then by Newton-Raphson met	hod the first calculated appr	roximate value								
	of this root is				[MP PET 1998]								
	(a) 0.9	(b) 0.6	(c) 1.2	(d) 0.8									
55.	The approximate val	ue of a root of the equation x^3	-3x-5=0 at the end of the sec	ond iteration by taking the	initial value of								
	the roots as 2, and by	y using Newton-Raphson metho	d, is		[AI CBSE 1990]								
	(a) 2.2806	(b) 2.2701	(c) 2.3333	(d) None of these									
56.	Newton-Raphson me	ethod is used to calculate $\sqrt[3]{65}$	by solving $x^3 = 65$. If $x_0 = 4$ is ta	aken as initial approximatior	then the first								
	approximation x_1 is [AMU 1999]												
	(a) 65/16	(b) 131/32	(c) 191/48	(d) 193/48									
57.	Starting with $x_0 = 1$,	the next approximation x_1 to 2	obtained by Newton's method	is	[DCE 1997]								

CLICK HERE >>

(a) $\frac{5}{3}$

(b) $\frac{4}{3}$

(c) $\frac{5}{4}$

(d) $\frac{5}{6}$

Trapezoidal rule

Basic Level

58. Approximate value of $\int_{x_0}^{x_0+nh} by$ Trapezoidal rule, is

IMP PET 1993, 971

[Where $y(x_i) = y_i$, $x_{i+1} - x_i = h$, i = 0, 1, 2,n]

- (a) $\frac{h}{2}[y_0 + y_n + 2(y_1 + y_2 + y_3 + \dots + y_{n-1})]$
- (b) $\frac{h}{3}[y_0 + y_n + 4(y_1 + y_3 + y_5 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$
- $\text{(c)} \quad \frac{h}{4}[y_0+y_n+2(y_1+y_3+y_5+.....+y_{n-1})+4(y_2+y_4+....+y_{n-2})]\\ \text{(d)} \quad \frac{h}{2}[y_0+y_2+y_4+.....+y_n)+2(y_1+y_3+y_5+....+y_{n-1})]\\ \text{(e)} \quad \frac{h}{4}[y_0+y_n+2(y_1+y_3+y_5+....+y_{n-1})+4(y_2+y_4+....+y_{n-2})]\\ \text{(d)} \quad \frac{h}{2}[y_0+y_2+y_4+....+y_n)+2(y_1+y_3+y_5+....+y_{n-1})]\\ \text{(e)} \quad \frac{h}{4}[y_0+y_n+2(y_1+y_3+y_5+....+y_{n-1})+4(y_2+y_4+....+y_{n-2})]\\ \text{(e)} \quad \frac{h}{2}[y_0+y_2+y_4+....+y_n)+2(y_1+y_3+y_5+....+y_{n-1})]\\ \text{(f)} \quad \frac{h}{2}[y_0+y_2+y_4+....+y_n)+2(y_1+y_3+y_5+....+y_{n-1})]$

59. Trapezoidal rule for evaluation of $\int_a^b f(x) dx$ requires the interval (a, b) to be divided into

[DCE 1994; MP PET 1996]

(a) 2n sub-intervals of equal width

- (b) 2n + 1 sub-intervals of equal width
- (c) Any number of sub-intervals of equal width
- (d) 3*n* sub-intervals of equal width

60. The value of f(x) is given only at $x = 0, \frac{1}{3}, \frac{2}{3}, 1$. Which of the following can be used to evaluate $\int_0^1 f(x) dx$ approximately

[MP PET 1999]

(a) Trapezoidal rule

(b) Simpson rule

(c) Trapezoidal as well as Simpson rule

- (d) None of these
- **61.** A river is 80 *metre* wide. Its depth *d metre* and corresponding distance *x metre* from one bank is given below in table
 - x: (
- 10
- 20
- 40
- 50
- 70
 - 80

ν: 0

- 4
- 7

12

- 15

60

14

8 3

Then the approximate area of cross-section of river by Trapezoidal rule, is

[MP PET 1994]

- (a) 710 sq.m
- (b) 730 *sq.m*

30

- (c) 705 *sq.m*
- (d) 750 sq.m

- 62. A curve passes through the points given by the following table
 - x: 1

50

- 4 80

70

100

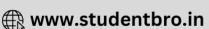
By Trapezoidal rule, the area bounded by the curve, the x-axis and the lines x = 1, x = 5, is

- (a) 310
- (b) 255

- (c) 305
- (d) 275
- 63. From the following table, using Trapezoidal rule, the area bounded by the curve, the x-axis and the lines x = 7.47, x = 7.52, is
 - *x*: 7.47

10

- 7.48
- 7.49
- 7.50
- 7.51
- 7 5 2



[MP PET 1999; DCE 2001]

f(*x*): 1.93

1.95

1.98

2.01

2.03 2.06

- (a) 0.0996
- (b) 0.0896

- (c) 0.1096
- (d) 0.0776

Let f(0) = 1, f(1) = 2.72, then the trapezoidal rule gives approximate value of $\int_0^1 f(x) dx$

(b) 1.86

(d) 0.86

65.

64.

By Trapezoidal rule, the value of $\int_0^1 x^3 dx$ considering five sub-intervals, is

- (a) 0.21
- (b) 0.23

- (c) 0.24
- (d) 0.26

Advance Level

The approximate value of $\int_1^9 x^2 dx$ by using Trapezoidal rule with 4 equal intervals is 66.

[EAMCET 2002]

- (a) 243
- (b) 248

- (c) 242.8
- (d) 242.5

Taking n = 4, by trapezoidal rule, the value of $\int_0^2 \frac{dx}{1+x}$ is 67.

[DCE 1999, 2000]

- (a) 1.1125
- (b) 1.1176

- (c) 1.118
- (d) None of these

68. With the help of trapezoidal rule for numerical integration and the following table

- 0.25
- 0.50

f(x): 0

(a) 0.35342

- 0.0625
- 0.2500
- 0.5625

[MP PET 1996]

- The value of $\int_0^1 f(x) dx$ is
 - - (b) 0.34375
- (c) 0.34457
- (d) 0.33334

If for n=3, the integral $\int_1^{10} x^3 dx$ is approximately evaluated by Trapezoidal rule $\int_1^{10} x^3 dx = 3 \left[\frac{1+10^3}{2} + \alpha + 7^3 \right]$, then $\alpha=0$ 69.

[MP PET 2000]

(a) 3^3

(b) 4^3

- (c) 5^3
- (d) 6^3

By trapezoidal rule, the value of $\int_{1}^{2} \frac{1}{x} dx$, (using five ordinates) is nearly 70.

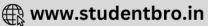
[DCE 1994]

- (a) 0.216
- (b) 0.697

- (c) 0.921
- (d) None of these

Simpson's one third rule

Basic Level



The value of $\int_{y}^{x_0+nh} dx$, n is even number, by Simpson's one-third rule is 71.

[MP PET 1995]

(a)
$$\frac{h}{3}[(y_0 + y_n) + 2(y_1 + y_3 + \dots + y_{n-1}) + 4(y_2 + y_4 + \dots + y_{n-2})]$$
 (b) $\frac{h}{3}[(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$

(c)
$$\frac{h}{3}[(y_0 + y_n) - 2(y_1 + y_3 + \dots + y_{n-1}) + 4(y_2 + y_4 + \dots + y_{n-2})]$$
 (d) None of these

Simpson's one-third rule for evaluation $\int_a^b f(x)dx$ requires the interval [a, b] to be divided into 72.

[DCE 1999]

- (a) An even number of sub-intervals of equal width
- (b) Any number of sub-intervals
- (c) Any number of sub-intervals of equal width
- (d) An odd number of sub-intervals of equal width

Simpson rule for evaluation of $\int_a^b f(x)dx$ requires the interval (a, b) to be divided into 73.

[Haryana CEE 1993; DCE 1994]

- (b) 2n + 1 intervals
- (c) 2*n* intervals
- (d) Any number of intervals

To calculate approximate value of π by Simpson's rule, the approximate formula is 74.

[MP PET 2000]

(a)
$$\int_0^1 \left(\frac{1}{1+x^2}\right) dx$$
, $n=16$

(a)
$$\int_0^1 \left(\frac{1}{1+x^2}\right) dx$$
, $n = 16$ (b) $\int_0^1 \left(\frac{1}{1+x^2}\right) dx$, $n = 9$ (c) $\int_0^1 \left(\frac{1}{1+x}\right) dx$, $n = 11$ (d) $\int_0^1 \left(\frac{1}{1+x}\right) dx$, $n = 9$

(c)
$$\int_0^1 \left(\frac{1}{1+x}\right) dx$$
, $n=1$

(d)
$$\int_0^1 \left(\frac{1}{1+x}\right) dx, n =$$

75. In Simpson's one-third rule, the curve y = f(x) is assumed to be a [MP PET 2001]

- (a) Circle
- (b) Parabola
- (c) Hyperbola
- (d) None of these

A river is 80 feet wide. The depth d (in feet) of the river at a distance of x feet from one bank is given by the following table 76.

- 10
- 20

- 80

0

- 12
- 15
- 3

70

By Simpson's rule, the area of the cross-section of the river is

- (a) 705 sq. feet
- (b) 690 sq. feet
- (c) 710 sq. feet
- (d) 715 sq. feet

77. A curve passes through the points given by the following table

- 2.7 2.8 3 2.6

By Simpson's rule, the area bounded by the curve, the x-axis and the lines x = 1, x = 4, is

(a) 7.583

(b) 6.783

(c) 7.783

(d) 7.275

Using Simpson's $\frac{1}{3}$ rule, the value of $\int_{1}^{3} f(x)dx$ for the following data, is 78.

f(x):

2.1

1.5

2.4

2

2.2

- 3 2.8



ſΜ	D	D	ET	1	a	a	2	1

(a) 55.5

(b) 11.1

(c) 5.05

(d) 4.975

By the application of Simpson's one-third rule for numerical integration, with two subintervals, the value of $\int_0^1 \frac{dx}{1+x}$ is [MP PET 1996] 79.

(b) $\frac{17}{36}$

(d) $\frac{17}{25}$

By Simpson's rule, the value of $\int_{x}^{3} dx$ by taking 6 sub-intervals, is 80.

(c) 100

(d) 99

If $\int_a^b f(x)dx$ is numerically integrated by Simpson's rule, then in any pair of consecutive sub-intervals by which of the following 81. curves, the curve y = f(x) is approximated [MP PET 1998]

(a) Straight line

(b) Parabola

(c) Circle

(d) Ellipse

If by Simpson's rule $\int_0^1 \frac{1}{1+x^2} dx = \frac{1}{12} [3.1 + 4(a+b)]$ when the interval [0, 1] is divided into 4 sub-intervals and a and b are the 82. values of $\frac{1}{1+r^2}$ at two of its division points, then the values of a and b are the following [MP PET 1998]

(a) $a = \frac{1}{1,0625}$, $b = \frac{1}{1,25}$ (b) $a = \frac{1}{1,0625}$, $b = \frac{1}{1,5625}$ (c) $a = \frac{1}{1,25}$, b = 1 (d) $a = \frac{1}{1,5625}$, $b = \frac{1}{1,25}$

If $e^0 = 1$, $e^1 = 2.72$, $e^2 = 7.39$, $e^3 = 20.09$ and $e^4 = 54.60$, then by Simpson's rule, the value of $\int_0^4 e^x dx$ is 83.

[MP PET 1994, 95, 2001, 02]

(a) 5.387

(b) 53.87

(c) 52.78

(d) 53.17

If (2, 6) is divided into four intervals of equal region, then the approximate value of $\int_2^6 \frac{1}{x^2 - x} dx$ using Simpson's rule, is 84.

[EAMCET 2002]

(a) 0.3222

(b) 0.2333

(c) 0.5222

(d) 0.2555

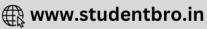
If h = 1 in Simpson's rule, the value of $\int_{1}^{5} \frac{dx}{x}$ is

(a) 1.62

(b) 1.43

(c) 1.48

(d) 1.56



Numerical	l Mothode

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	С	b	a	b	с	d	b	a	С	b	с	b	d	a	d	С	С	b	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	a	d	a	С	a	С	b	a	d	d	b	a	d	С	d	b	b	a	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	С	b	b	С	a	С	b	d	b	a	b	с	d	a	d	b	a	с	a
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
С	b	a	b	d	b	a	b	b	b	b	a	С	a	b	С	С	с	С	a
81	82	83	84	85															
b	b	b	С	a															

